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Abstract. We report a molecular dynamics computation of the entropic depletion force induced
between two large spheres (colloidal particles) immersed in a fluid of small spheres. The effective
pair potential obtained by numerical integration of the force is used in a Monte Carlo study of the
phase behaviour of the binary mixture. The simulation results are compared with the relevant
theoretical predictions that follow from various integral equations for liquid mixtures. The
simulations provide evidence for a spinodal instability in a liquid mixture of hard spheres with
a size ratio of 0.1.

1. Introduction

Depletion forces arise when small particles (polymer, small colloidal particles) are added
to a suspension of large colloidal particles. These forces result from the excluded-volume
interaction between a large and a small particle. Ifσs denotes the diameter of the small
particles andσl represents the diameter of the large component, then there is a volume of
radiusξ = (σs + σl)/2 around every large colloidal particle where the centres of the small
particles cannot penetrate. The key point is that, although the large particles themselves
cannot overlap, the volumes that they exclude for the small components can. As a result,
when two large colloidal particles are separated by less thanσs , the pressure exerted by the
small component is anisotropic, leading to a strong attractive force between colloids. In
1958, Asakura and Oosawa [1] suggested that such a depletion mechanism was responsible
for the reversible flocculation observed in colloid–polymer mixtures. Their model was based
on an excluded-volume calculation, carried out to first order in the density of the small
component. They showed that at small separation (smaller thanσs) there is an attractive
interaction between the large colloids. Recently, Maoet al [2] extended this calculation
by taking into account the second- and the third-order contribution of the small-particle
density to the depletion force. They found evidence for a pronounced repulsive barrier
close to the attractive depletion well when the separation between colloids is larger than
σs . The presence of such a repulsive interaction in the potential of mean force of two
colloidal spheres is qualitatively similar to the oscillating force between the solid surfaces
that confine a thin layer of liquid [3]. The characteristic distance scale of these oscillations is
determined by the size of the confined molecules (in the present case, the small particles).
Such oscillations are due to the layering of the confined fluid close to the surfaces. In
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section 3, we show that in a molecular dynamics (MD) study of the depletion force such
oscillating behaviour is indeed observed.

At this stage it is important to define more accurately what we mean by ‘the depletion
force’. Mixtures of small and large colloidal particles are often modelled as a mixture of
dissimilar hard spheres. For instance, the calculations by Maoet al [2] are based on such
a model. But colloid–polymer mixtures cannot be accurately modelled by a mixture of
hard spheres, since the interaction between polymers is usually quite weak. This aspect
is captured by the Asakura–Oosawa model which assumes anon-additive hard-sphere
interaction where polymers can interpenetrate each other freely. If we denote the contact
distance between two particles of species ‘A’ (‘ B ’) by σAA (σBB), then for non-additive
hard spheres, the contact distance between particles ‘A’ and ‘B ’ is defined as

σAB = σA + σB

2
(1 + 1) (1)

where1 is the non-additivity parameter. When1 < 0, particles ‘A’ and ‘B ’ ‘like’ each
other, so mixing is favoured. In contrast, when1 > 0, which is the case of polymer–colloid
mixtures, particles ‘A’ and ‘B ’ prefer not to mix, with the result that phase separation can
occur. Many studies of non-additive hard-sphere fluids have been performed for equally
sized particles [4], while large size ratios have been investigated in reference [5] using an
equation of state suggested by Barboy and Gelbart [6]. It appears from this study that for
large size ratios, non-additivity is the leading contribution to phase separation. The case of
a purely additive hard-sphere mixture (1 = 0) is of considerable practical relevance, yet
very special from a theoretical point of view. In what follows, we focus on this case. We
will show that the competition between the entropy of the large and the smaller particles is
very subtle. It results in a slow phase separation of the two components, preceded by the
formation of clusters of large spheres.

Before we consider the phase behaviour of hard-sphere mixtures, we first briefly review
some of the published theoretical results on the pair structure. We present Monte Carlo
(MC) simulation data that allow us to test these theoretical predictions in considerable
detail (section 2). Subsequently, we consider in more detail the effective pair interactions
between the large colloidal particles immersed in a reservoir of small spheres (section 3).
In section 4 we use the effective pair potential, as determined by MD simulations, as input
for Monte Carlo simulations to study the behaviour of a fluid of hard spheres interacting
through a short-ranged depletion interaction (section 4).

2. Integral equations versus simulations

2.1. Introduction

Pair correlations in a fluid provide a quantitative measure of both the local order, i.e. the
way in which molecules are organized in the neighbourhood of a given molecule of the fluid,
and the long-range order. Local properties show up most clearly in the pair distribution
function itself, while long-range properties, such as the compressibility, appear more clearly
in Fourier space, i.e. in the structure factor. The usual starting point for the theoretical
calculation of pair correlation functions in liquids is the well known Ornstein–Zernike
equations [7]:

hαβ(r) = cαβ(r) +
∑

γ

ργ cαγ (r) ∗ hγβ(r) (2)

wherehαβ(r) is the pair correlation function for particles of speciesα andβ respectively.
This pair correlation function is related to the pair distribution functiongαβ(r) through the
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simple equationhαβ(r) = gαβ(r) − 1. cαβ(r) is the Ornstein–Zernike direct correlation
function, andρα is the number density of ‘α’-particles. ‘∗’ denotes a convolution. It is
clear that equations (2) do not constitute a closed system, and a set of closure relations
is necessary to compute bothg(r)s andc(r)s. Every closure of equation (2) leads to an
integral equation forg(r). The search for good approximate closure relations of equation (2)
has resulted in a large number of such integral equations. For hard-sphere mixtures, the
first successful integral equation was the famous Percus–Yevick equation [8]. However,
more recent integral equations, such as the ones that result from the closures proposed by
Rogers and Young (RY) [9] and by Ballone, Pastore, Galli and Gazzillo (BPGG) [10], have
proven to provide a more accurate estimate of the pair structure of a hard-sphere fluid, in
particular at high densities. Introducing the notationγαβ(r) = hαβ(r) − cαβ(r), the PY, RY
and BPGG closure relations take the forms

gαβ(r) = exp(−βUαβ(r))[1 + γαβ(r)] (PY) (3)

whereUαβ(r) is the pair potential between a particle of type ‘α’ and a particle of type ‘β ’
(the factorβ appearing in the exponential is the inverse temperatureβ = 1/kBT ),

gαβ(r) = exp(−βUαβ(r))

[
1 + exp(γαβ(r)fαβ(r)) − 1

fαβ(r)

]
(RY) (4)

where the functionfαβ(r) ≡ 1 − exp(−ξαβr) varies between 0 and 1, and finally

gαβ(r) = exp(−βUαβ(r)) exp{[1 + sγαβ(r)]1/s − 1} (BPGG). (5)

In the latter two expressions, additional adjustable parameters occur, namely ‘ξαβ ’ for the RY
closure and ‘s’ for the BPGG approximation. However, these parameters cannot be chosen
at will, as they should be chosen such that they eliminate the so-called thermodynamical
inconsistency that plagues many approximate integral equations, such as the PY one. A
manifestation of this inconsistency is that there is a difference between the pressure as
computed from the virial equation of state, and as computed from the compressibility
relation. A detailed discussion of these integral equations applied to a very asymmetric
mixture of hard spheres can be found in reference [11], and partially in references
[12–14]. We briefly summarize the most important theoretical predictions in the next
section, and present a comparison with the results of numerical simulations for a size
ratio y = σs/σl = 0.1. But before we discuss the results, we briefly comment on the MC
simulation technique.

In standard MC simulations, new configurations are generated by attempting to displace
individual particles over a small, but otherwise random distance. If this trial move results
in an overlap, the move is rejected. The average size of the trial displacement must not be
too small, otherwise the new configuration does not differ significantly. Neither should the
displacement be too large, because then the probability of overlap is so high that the move
is almost always rejected. In order to get a reasonable acceptance, the magnitude of a trial
move should be of the order of the typical surface-to-surface separation between particles.
In the case of large spheres immersed in a concentrated suspension of small particles, the
mean separation between the surfaces of two particles is typically a fraction of the diameter
of the smallestcomponent. As a result, the displacement of a large particle cannot exceed
the scale of a small particle. In fact, the situation is worse, as one large particle can
overlap with many small particles simultaneously. And any one such overlap is sufficient
to lead to the rejection of the trial move. As a consequence, the standard MC scheme is
very inefficient in moving large particles in a sea of small particles. To perform efficient
numerical simulations of highly asymmetric mixtures, we have used a special Monte Carlo
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algorithm that allows us to carry out exchanges between small and large particles [11].
This algorithm, that is based on the configurational bias Monte Carlo method [15, 16], is
presented in appendix A. Similar algorithms have been used to study mixtures of hard cubes
[17, 18] and mixtures of spherical and rod-like colloids [19].

Figure 1. The phase diagram of a hard-sphere binary mixture of size ratio 0.1. The dashed
curve corresponds to the spinodal as predicted by the RY approximation. The stable and unstable
regions are indicated in the figure. Two points of the BPGG spinodal are also presented. The
grey area corresponds to the regionηs + ηl > 0.5, where the system is likely to have solidified.
In any event, crystallization is not considered in the integral equations. It is, however, quite
likely that crystallization of the large spheres will already have started at a lower overall packing
fraction (see the text). The three points A, B and C correspond to the thermodynamical states
for which MC computations have been performed.

2.2. Comparison with simulation

Let us briefly summarize the most striking theoretical predictions concerning the behaviour
of highly asymmetric hard-sphere mixtures. First of all, the integral equations that we
consider all predict that, at fixed packing fraction, the pair distribution function of the large
spheres will develop aδ-peak at contact (i.e. atr = σl) [12], in the limit y = σs/σl → 0.
It has been shown that within the PY approximation, the system of large spheres reduces
to the well known Baxter (sticky-sphere) model in this limit [14]. The second interesting
theoretical result concerns the possible existence of spinodal instability in the binary fluid
mixture. Both the RY and BPGG integral equations [13] predict that such an instability
should develop whereas the PY equation always predicts complete miscibility of the two
components [20, 21]. Figure 1 shows the predicted phase diagram for a size ratioy = 0.1.
The figure suggests that there are appreciable differences between the prediction of the
two ‘thermodynamically self-consistent’ integral equations. We now focus on a particular
thermodynamical state, chosen close to the RY spinodal line (point ‘A’ of the phase
diagram). For this state point, the packing fractions are respectivelyηs(= π/6ρsσ

3
s ) = 0.072
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Figure 2. Pair distribution functions for state point ‘A’. A comparison between integral equation
results and MC data. PY and BPGG predictions are in close agreement with the MC data, except
close to the contact value ofgll . The PY contact value is indicated by the arrow. The MC
contact value is a based on a linear three-point extrapolation, and is expected to be a lower
bound.

Figure 3. Structure factors for state point ‘A’. The large peak that appears inSss(k) at low values
of k is due to the scattering by the network of large colloidal particles. But the extra divergence
observed fork = 0 within the RY approximation corresponds to a spinodal instability.
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for the small particles, andηl = 0.244 for the large ones. The choice of this state point was
dictated primarily by computational considerations: as the computer time increases strongly
with the total number of particles. The number of small particles is related to the number
of large ones through the relationNs = Nlηs/(ηly

3). Even if we fix the number of large
particles at a quite small value (say 10) then, for a size ratioy = 0.1, the number of small
particles is of order 104 for ηs/ηl = O(1). The region of the phase diagram that we can
explore with the MC algorithm presented in appendix A is then the region of largeηl and
low ηs . Figure 2 shows a comparison of the Monte Carlo results for the pair distribution
functions and the corresponding theoretical predictions. As expected, we observe a large
value of gll at contact. This effect is even stronger in the MC simulations than in the
theoretical predictions. A second feature to note is the slow decay ofgss at large distances.
The theoretical interpretation of this behaviour is discussed in some detail in reference [12]:
it is due to the fact that, in the limity → 0 and at fixed packing fractions, the fluid of
small particles behaves like an effective fluid placed in a network of cavities made by the
large particles. The bulk density of this effective fluid is simplyρ∗

s = ρs/(1 − ηl), due to
the reduction of the accessible volume. The slow variation ofgss is a consequence of the
Gruyere-like structure of this effective fluid. As a consequence, the structure factorSss(k)

exhibits a peak at small values ofk, due to the scattering by the network of cavities. We
can observe this effect in figure 3. It is interesting to note that the BPGG and even the
PY equation predict a behaviour ofSss(k) that is in close agreement with the simulations.
However, the RY equation predicts large fluctuations atk = 0 for Sss(k) close to the
spinodal line, in contradiction to the simulation results. We return to a discussion of the
behaviour ofgss in section 3.

Figure 4. Pair distribution functions for state ‘B’. Note the very large contact value ofgll

obtained in MC simulation.

Next, we consider state point ‘B’ of the phase diagram shown in figure 1 (ηs = 0.1, ηl =
0.25). As can be seen in figures 4 and 5, the situation now is very different. For point ‘B’,
we do not have the results for the RY closure, as this state point is in the unstable region
of the RY phase diagram. However, the MC results now exhibit behaviour that resembles
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Figure 5. Structure factors for state ‘B’. MC data differ from BPGG and PY estimates, and
exhibit the same behaviour as RY data close to the spinodal line. However, the RY integral
equation has no solution for this state point.

the results of the RY approximation for state ‘A’. The proximity of a spinodal line is also
suggested by the very large contact value ofgll (>20) found in the MC simulation of
point ‘B’.

2.3. Discussion

The previous results, especially those obtained for state point ‘B’, suggest that there is
indeed a spinodal instability in the hard-sphere fluid mixture. However, it should be noted
that the numerical simulations for state point ‘B’ are less accurate than for point ‘A’. The
reason is that at point ‘B’, the density of small spheres is a factor of 1.4 higher than at point
‘A’. As the efficiency of the insertion method discussed in appendix A decreases rapidly
with increasing density, the acceptance rate for trial moves of the large spheres is much
less at point ‘B’ than at point ‘A’. As a result, the statistical errors in the simulation results
at point ‘B’ are quite large and this makes it difficult to make categorical statements about
the occurrence of a phase separation. Apart from that, it is encouraging to note the good
overall agreement with the MC simulation results of the predictions based on the BPGG
approximation (and on the RY approximation, far from any spinodal line). To extend the test
of the theories to other parts of the phase diagram, it is necessary to increase both the size
of the system (the above MC simulations were performed withNl = 10!), and to increase
the packing fraction of the small particles. Under those conditions, the MC simulations of
the type described above, although more efficient than conventional MC simulations, are
nevertheless prohibitively expensive. To gain insight into the phase behaviour in this regime,
we try to map the mixture of large particles immersed in a bath of small particles onto an
effective one-component fluid interacting through an effective potential. Once we have
determined the effective pair potential, we can limit our simulations to the large particles
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only. It should be stressed that such an approach is only justified if the potential of mean
force is pairwise additive. In the limity → 0, this is indeed the case.

3. The effective potential

3.1. The general expressions for the potential and for the mean force

When large particles, such as colloids, are immersed into a suspension of particles that
are much smaller, it is tempting to describe the interactions between the large particles in
terms of an effective potential. The standard statistical-mechanical approach for arriving at
such a simplified description is to integrate the full Boltzmann factor of the system over all
degrees of freedom of the suspending fluid. The mean value of a dynamical variableA in
the canonical ensemble is defined by

〈A({XI , PI })〉 = 1

Z

∫ ∏
I

dXI dPI

∏
i

dxi dpi A({XI , PI })

× exp

[
−β

(∑
I

P 2
I

2M
+

∑
I<J

VIJ +
∑

i

p2
i

2m
+

∑
i<j

Vij +
∑
iI

ViI

)]
(6)

with the convention that capital letters represent quantities related to colloidal particles.Vij

represents the interaction between a pair of small particles;ViI represents the interaction
between the small and the large particles; andVIJ represents the interaction between two
colloidal (i.e. large) particles.β = 1/kBT is the inverse temperature, andZ is the partition
function:

Z =
∫ ∏

I

dXI dPI

∏
i

dxi dpi exp

[
−β

(∑
I

P 2
I

2M
+

∑
I<J

VIJ

+
∑

i

p2
i

2m
+

∑
i<j

Vij +
∑
iI

ViI

)]
. (7)

Equation (6) can easily be rewritten:

〈A({XI , PI })〉 = 1

Z
∫ ∏

I

dXI dPI A({XI , PI })

× exp

[
−β

(∑
I

P 2
I

2M
+

∑
I<J

VIJ + V({XI })
)]

(8)

where the effective potentialV is defined by

βV({XI }) = − ln

{∫ ∏
i

dxi exp

[
−β

(∑
iI

ViI +
∑
i<j

Vij

)]}
(9)

and the effective partition function is

Z =
∫ ∏

I

dXI dPI exp

[
−β

(∑
I

P 2
I

2M
+

∑
I<J

VIJ + V({XI })
)]

. (10)

Obviously, the effective potential is a complicated object that depends on all the coordinates
of all the colloidal particles. In order to simplify matters, it is convenient to introduce the
mean force acting on a colloidal particle. This mean force is defined as (minus) the gradient
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of the effective potential with respect to the position of the particle. Using equation (9), the
mean force acting on a colloidal particle with indexK is given by

−∇XK
{V({XI })} = −

∑
l

∫ {∫ ∏
i 6=l

dxi exp

[
−β

(∑
iI

ViI +
∑
i<j

Vij

)]}

×
{∫ ∏

i

dxi exp

[
−β

(∑
iI

ViI +
∑
i<j

Vij

)]}−1

∇XK

(
VlK

)
dxl (11)

where the notation∇XK
denotes the gradient with respect to the positionXK of the colloidal

particle, and the sum is taken over the small particles (index ‘l’). We easily recognize in
this last expression the single-particle density of the small particles in the external field of
the large ones:

ρ(1)(xl|{XI }) ≡ Ns

{∫ ∏
i 6=l

dxi exp

[
−β

(∑
iI

ViI +
∑
i<j

Vij

)]}

×
{∫ ∏

i

dxi exp

[
−β

(∑
iI

ViI +
∑
i<j

Vij

)]}−1

. (12)

The mean force then reads

FK({XI }) = − 1

Ns

∑
l

∫
dxl ∇XK

(VlK)ρ(1)(xl|{XI }). (13)

Because the interaction potentialVlK depends only onxl − XK , we have∇XK
(VlK) =

−∇xl
(VlK). The sum over the small particles then reduces to a factor ofNs . The final

expression of the mean force is simply

FK({XI }) =
∫

dr ∇Vsl(r)ρ
(1)(r|{XI }) (14)

whereVsl(r) is the pair interaction between a large and a small particle (assumed to be
spherically symmetric for the sake of simplicity). Here,ρ(1)(r|{XI }) is the equilibrium
single-particle density of the small particles in the external field of the large ones, with the
convention that particleK is placed at the origin. For hard-sphere interactions, the effective
mean force is

βFK({XI }) = ξ2
∫

dσ̂ ρ(1)(−ξ+σ̂|{XI })σ̂ (15)

whereξ = (σs +σl)/2 is the radius of the pair excluded volume (σs andσl are the diameters
of small and large particles respectively).σ̂ is a unit vector, pointing towards the centre
of the large sphere. The integral is then calculated just outside the surface of the excluded
volume associated with colloidal particle ‘K ’. The interpretation of equation (15) is very
simple: the mean force acting on colloidal particle ‘K ’ is simply the surface integral of
the normal component of the instantaneous local pressure at the surface of this particle.
Of course, the above ‘derivation’ is static in nature and says nothing about the time-scale
on which this mean force is a meaningful concept. It is therefore interesting to note that
equation (15) has also been derived from a multiple-time-scale analysis of kinetic theory in
reference [22].
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Figure 6. The predicted density dependence of the distribution of the small particles around
a large sphere (size ratioy = 0.1). The radial distribution functions were computed using the
Rogers–Young integral equation.

3.2. Pairwise additivity of the mean force

Let us first consider the situation where a finite number of large spheres, sayNl , are placed
in an infinite volume filled with small spheres at a densityρs . In this case the density of
large particlesρl = 0. If there is only one large particle in the fluid formed by the small
ones, the mean force is obviously zero since the distribution of the smaller particles around
the large one is isotropic. When two large particles are at a distance ‘d ’, the effective
force between them can be measured directly using molecular dynamics (MD) simulations.
Alternative, the force may be estimated using the superposition approximation:

ρ(1)(x|X1, X2) ' ρsgsl(x − X1)gsl(x − X2) (16)

where gsl is the small–large pair distribution function of the binary mixture at infinite
dilution of the large spheres. This pair distribution function can be estimated using an
integral equation, such as the Percus–Yevick or Rogers and Young (RY) ones. Figure 6
shows the Rogers-Young prediction for the density dependence ofgsl . In the superposition
approximation, the force acting on particle ‘1’ can be written as

βF1(X1, X2) = ξ2ρsgsl(ξ)

∫
dσ̂ σ̂hsl(X2 − X1 + ξ σ̂) (17)

where we have introduced the pair correlation functionhsl(r) = gsl(r) − 1, that goes to
zero at large distances.

A comparison of simulation data and the superposition approximation using both PY
and RY approximations is shown in figure 7. This figure shows that for densities as large
as ρs = 0.4σ−3

s the superposition approximation yields an excellent estimate of the pair
force. At higher densities we observe a phase shift of the oscillations close to the repulsive
peak, but far from this peak (d = 3σs) the superposition approximation works well, as
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Figure 7. The depletion force as measured during a MD simulation. A comparison with
the superposition approximation, using the PY or RY approximation forgsl(r). Even though
discrepancies occur at high densities and short distances, the agreement is quite good at large
distances.

expected. This success of the superposition approximation in predicting the distribution of
small particles around two spheres has been pointed out earlier by Attard [23].

When more than two colloidal particles are present, there is noa priori reason for the
force to be pairwise additive. If we consider the particular case of three large spheres, it is
easy to show that the three-particle superposition approximation leads to

βF1({XI }) = ξ2ρsgsl(ξ)

∫
dσ̂ σ̂

( ∑
I=2,3

hsl(XI − X1 + ξ σ̂)

+
∏

I=2,3

hsl(XI − X1 + ξ σ̂)

)
. (18)

Using equation (17), we can rewrite equation (18) as

βF1(X1, X2, X3) = βF1(X1, X2) + βF1(X1, X3)

+ ξ2ρsgsl(ξ)

∫
dσ̂ σ̂

∏
I=2,3

hsl(XI − X1 + ξ σ̂). (19)

This last expression shows that the breakdown of pairwise additivity comes from the overlap
of the pair correlation functions around particles ‘2’ and ‘3’ on the surface of the excluded
sphere of radiusξ around particle ‘1’. However, figure 6 shows that the typical range of the
pair correlation functionhsl(r) is of the order ofξ + 3σs , which means that the correction
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to pairwise additivity only appears when all three spheres are very close together. To get
a feeling for the magnitude of this effect, consider the particular (and extreme) case where
particle 1 is in contact with both particle 2 and particle 3, whileθ is the anglê213.

Figure 8. The three-particle superposition approximation versus pairwise estimation of the force.
The top curve represents the force acting on a central particle at contact with two other particles.
θ is the angle between the vectors joining the central sphere to these two particles. We only
notice a very small difference when the three particles are close to contact (θ = 60◦). The
bottom curve is the difference between the two previous curves.Note the difference in scale
between the top and bottom figures.

Figure 8 shows two different estimates of the net force on particle 1. The first estimate
was obtained using the three-particle superposition approximation. And the second estimate
was computed assuming pairwise additivity of the forces. The angleθ was varied between
60◦ (all three particles in contact) and 180◦ (collinear configuration). The size ratioσs/σl

was 0.1. As can be seen in figure 8, even for highly packed configurations the pairwise-
additivity approximation yields excellent results, even close to the triangular configuration
and for a rather high density of small particles (0.6σ−3

s ).
The reason is twofold. First of all, for small values of the size ratioy, the range

of hsl(r) is small compared to the size of the large particles. Secondly, for size ratios
less than 0.154, there are no ‘triply excluded’ configurations of the small sphere, i.e. there
are no configurations for which the small sphere could overlap with all three large spheres
simultaneously. This removes another obvious source of non-pairwise-additive effects in the
depletion interaction. It therefore seems reasonable to assume that for a size ratioy = 0.1
(or less), the depletion interaction is, to a good approximation, pairwise additive, even for
concentrated colloidal systems. We stress that this pairwise additivity is expected to break
down for larger values of the size ration.

The densityρs that appears in equation (16) is the density of the suspension of small
particlesfar from the two colloidal particles. However, this is only true at infinite dilution
of the large spheres. For finite valuesρl , the bulk density of the small spheres that enters
into the superposition approximation is no longerρs = Ns/V , as the volumeVacc that is
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accessible to the small particles is reduced by the presence of the large particles. However,
the density of the small particles as such is not the quantity of interest. What we need to
know are the structural properties of a suspension of small particles in osmotic equilibrium
with the mixture. In the case where the concentration of large particles in the mixture tends
to zero, the density of the small particles in the mixture is equal to their density in the
reservoir. However, in general the densities will be different. To give a specific example,
consider the case where the size ratioσs/σl → 0. In this case, the fraction of the volume
in the mixture that is accessible to small particles is simplyVacc/V = 1 − ηl , whereηl is
the packing fraction of the large particles. And hence the density of small particles in the
mixture (ρs) is related to the density in the reservoir (ρ∗

s ) through
ρs

1 − ηl

= ρ∗
s . (20)

In the more general case, the relation between the densities is fixed by the condition of
osmotic equilibrium (i.e. equal chemical potentials). In the limit whereρs → 0, the relation
between the density of small particles in the reservoir and in the mixture is given by the
Widom relation [24]:

ρs = ρ∗
s exp[−βµex

s (ρl, ρs = 0)] (21)

whereµex
s denotes the excess chemical potential of the small particles in the mixture. An

approximate relation betweenρs and ρ∗
s can be obtained for hard spheres using scaled

particle theory [25, 26]:

ρ∗
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]
(22)

wherey = σs/σl . We shall assume that this relation also holds for finiteρs .

3.3. The effective pair potential

The pair potential of mean force can be obtained by integration from the average force
itself:

βV (rs) =
∫ +∞

rs

βF(r ′
s)σs dr ′

s (23)

where rs = r/σs is the dimensionless distance to the centre of the large sphere. The
determination of the effective potential using equation (23) and MD data presented in
figure 7 is not completely straightforward since we do not have data for separations larger
than 3σs . However, this problem is not too serious since we know that the superposition
approximation is accurate at large separations. We can then estimate the integral of the
force betweenrs = ξ/σs + 3 and +∞ by using this approximation. In any event, this
contribution turns out to be negligible.

It is interesting to compare the computed depletion potential to the perturbation theory
prediction of reference [2]. The simulated pair potentials, together with the superposition
approximation and the perturbation theory predictions, are shown in figure 9. This figure
shows the variation of the depletion potential for different values ofρ∗

s . The results show
that the two theories are, in a sense, complementary: at low densities (ρ∗

s = 0.4σ−3
s )

the MD data for the mean force compare well with the superposition approximation (see
figure 7), except inside the depletion well (separations smaller thanσs). At higher densities,
the discrepancies propagate to larger separations. In contrast, the perturbation theory of
reference [2] accurately reproduces the MD data inside the depletion well, even at relatively
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Figure 9. The effective depletion potential as a function of the density of small particles.
This figure shows a comparison between MD data, the theory of Maoet al [2], and the
superposition approximation using the RY pair distribution functions. In every case, the short-
distance behaviour coincides with the perturbation theory of reference [2], and the long-range
behaviour compares very well with the superposition approximation.

high effective densities. But at larger distances, the oscillations of the potential are only
poorly reproduced by the perturbation theory. At low densities, both theories agree with
the MD data.

For what follows, we emphasize once again the result presented in figure 8: for a
suspension of large spheres immersed in a bath of small spheres (size ratio of 0.1), the
force between the large spheres is, to an excellent approximation, pairwise additive, even
for quite compact configurations of the large spheres. We therefore assume that, in Monte
Carlo simulations, we can use this effective pair potential to represent the effect of the small
spheres on the large ones.

4. Simulation of the effective one-component fluid

Simulations were performed on a system of 2700 large colloidal particles interacting through
the effective potential discussed above. We stress that this effective potential is a function of
the chemical potential of the small particles. The size ratio is fixed at a value of 0.1. A test
of this effective one-fluid model is presented in figure 10. In this figure we compare the MC
results obtained for thegll(r) in the effective-fluid simulation to the corresponding results
obtained in MC simulations of the full binary mixture. We also compare the simulation
results to the predictions based on the BPGG integral equation. These simulations were
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Figure 10. The pair distribution function for the large particles. A comparison of MC data for
the effective one-component fluid, MC data for the full binary system and the BPGG integral
equation. The calculations were performed at state point ‘A’ of the phase diagram.

performed at the state point ‘A’ in the phase diagram of figure 1. We note that the simulations
of the effective one-fluid model are in good agreement with the results for the full simulation
of the mixture. There is no reason to assume that the remaining discrepancies in figure 10
are due to an inadequacy of the effective one-fluid model. After all, the number of large
spheres in the full simulation of the binary mixture is quite small (O(10)) and the statistical
accuracy of this simulation is rather poor. Note also that the effective-one-fluid simulation
data are in excellent agreement with the BPGG prediction.

Next, we increase the chemical potential of the small particles, in order to increase
the depletion effects. To this end, we study state point ‘C’ of the phase diagram
(ρ∗

s = 0.7σ−3
s , ηl = 0.1). Here, we observe very interesting behaviour. In the absence

of the depletion potential the system of large (hard) spheres equilibrates in several thousand
Monte Carlo cycles (trial moves per particle). If now we switch on the depletion potential,
the relaxation of the system to its equilibrium state changes dramatically. Below, we discuss
what happens to the pair structure during a fairly long MC simulation (2.5 × 106 Monte
Carlo cycles). We shall see that the short-range structure equilibrates quite rapidly (the
pressure equilibrium process). In contrast, the equilibration of the large-scale structure is
rather slow. We stress, however, that the MC results for the rate of structural relaxation
can, at best, be suggestive, as the MC simulation technique does not mimic the real (hydro-)
dynamics of the system.

4.1. Short-range structure

Let us first compare the contact value forg(r) as measured in the MC simulations to
the predictions of the various integral equations. The PY approximation predicts a value
gPY (σ+

l ) ' 17.5, while the BPGG approximation yieldsgBPGG(σ+
l ) ' 90. The MC

results of figure 11 show thatg(r) at contact reaches a value that is close to 400. The
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Figure 11. The behaviour of the pair distribution function as a function of MC ‘time’ for state
point ‘C’. This figure represents the evolution of the peak ing(r) at contact. The value at
contact is based on a quadratic extrapolation. Note that the peak is very narrow (only 5% of the
diameter of the small particles). Each curve corresponds to an average over 250 kilocycles.

Figure 12. Evolution of the number of nearest neighbours (particles contained in the contact
peak ofg(r)) at state point ‘C’. Already during the first few thousand MC cycles there is a
strong tendency of the particles to stick.

underestimation of the contact value by the PY approximation is not a surprise, since this is
one of the well known defects of that approximation. In contrast, the BPGG approximation
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Figure 13. A histogram of the number of nearest neighbours at state point ‘C’. The distribution
is very wide. This suggests that the structure that develops during the simulation is not (yet)
very well ordered.

Figure 14. The pair distribution function at state point ‘C’. We can observe in this figure the
slow relaxation of the local order. It is important to notice that the short-range structure (the
contact peak and second peak) do not change much during the simulation. The remarkable point
is the emergence of a peak atr ' 1.75σl , showing a tendency of the system to create a local
order (see the text).



10816 T Biben et al

Figure 15. The evolution of the size of the largest cluster at state point ‘C’. The two
curves correspond to different values of the cut-off used to identify bound particles. After
500 kilocycles, the largest cluster contains half of the particles in the system, and its size does
not vary much after that.

usually does much better. But not in this case. Figure 11 shows the evolution of the
magnitude of the peak at contact during the MC simulation. The estimated contact values
shown in this figure are based on quadratic extrapolations. We observe an increase of the
contact value during the simulation, but the very large value of 250 is already reached
after some 50 kilocycles. We also stress the very short range of the contact peak, typically
less than 0.1σs . This very small value of the width of the contact peak is due to the
shape of the depletion potential: a very sharp attractive well followed by a rather broad
repulsive barrier. The poor performance of the BPGG integral equation is a first sign of
the breakdown of these integral equations at extreme size ratios and high densities. Integral
equations tend to strongly underestimate the stickiness of colloidal particles. We conclude
from MC data that the depletion potential tends to make the particles stick together, and that
this process is, at least initially, rather fast. To emphasize this point, we have computed the
evolution of the number of nearest neighbours as a function of MC ‘time’ (figure 12). The
number of nearest neighbours is defined as the mean number of particles within a distance
corresponding to the width of the first peak ofg(r). The cut-off distance that we chose
was dcut = 0.5σs . In any event, as the peak ofg(r) at contact is very narrow, and the
precise choice ofdcut is not crucial. The number of neighbours increases very rapidly from
zero to 2.5, and then relaxes more slowly to the value of 3.5. Histograms of the number
of nearest neighbours are presented in figure 13. Note that, after about 106 MC cycles, the
system appears to have reached an equilibrium state. If we now consider the organization of
next-nearest neighbours (figure 14), we observe a slow reorganization with the appearance
of a local peak at a distancer = √

3σl , and a discontinuity atr = 2σl . This is precisely the
behaviour expected for sticky spheres. The discontinuity atr = 2σl is reproduced by the
PY equation for adhesive spheres [27]. The peak atr = √

3σl is not contained in the PY
equation, but is found in MC simulations of the sticky-sphere model [28]: it corresponds



Depletion effects in binary hard-sphere fluids 10817

to a local organization of particles into a trigonal bi-pyramid. The only difference is that
in the adhesive-sphere limit, this peak is aδ-function peak and the discontinuity at 2σl is a
true discontinuity. Here both features are slightly smeared.

In this context, it is interesting to study the clustering of the large spheres. To this
end, we need a clustering criterion. In what follows, we consider two particles to belong
to the same cluster if their separation is smaller thandcut . In figure 15, we compare the
evolution of the largest cluster size for two values of ‘dcut ’, namely 0.5σs and 0.05σs .
Although the two curves do differ quantitatively, they are qualitatively very similar. And
even the quantitative differences between the two curves are not very large. This implies
that the typical separation between two neighbouring particles in a cluster is smaller than
0.05σs = 0.005σl ! If we now consider the size of the largest cluster, the measured value
oscillates around a value of 1500 particles! As the total number of particles in our system
is only 2700, it is safe to conclude that, at point ‘C’, a finite fraction of all particles reside
in a percolating cluster. The strong fluctuations that we can observe in both curves of figure
15 are reassuring since they show that the MC algorithm enables the cluster to exchange
particles with the rest of the fluid. The observed cluster, although probably meta-stable with
respect to the crystalline state, is therefore in dynamic equilibrium with the liquid.

4.2. Large-scale structure

Figures 16 and 17 show the variation of the structure factor of the system at the beginning
and the end of the simulation compared to the average over the simulation. The most
striking feature is the large peak at lowk-values. This is indicative of strong density
fluctuations on larger length scales. It provides one more indication that the fluid is, in
fact, inhomogeneous. In other words, at state point ‘C’, the binary mixture of hard spheres
appears to undergo spontaneous phase separation. This is the first numerical evidence for
such behaviour that was predicted on basis of integral equation predictions [13].

The second point is the tendency towards large-scale ordering that we can observe by
looking at the peaks appearing in figure 17. We can understand this property as follows:
the fluid first forms large disordered clusters by essentially random adhesion of ‘sticky’
particles. Subsequently, the structure of the cluster relaxes to a more stable state. However,
this relaxation is slow, as the reorganization of a cluster requires bond breaking. The
structure factor in figure 17 suggests that the final cluster has appreciable crystalline ordering.
However, the peaks that we observe in the structure factor are rapidly fluctuating, which
explains that they do not show up quite as strongly in the mean structure factor. In any
event, the behaviour that we observe is compatible with a scenario where, in the first stages
of the phase separation, the large spheres cluster into an amorphous phase. This amorphous
phase subsequently transforms slowly into a phase with appreciable crystalline order. On
the time-scale of our simulation, this crystallization is still far from complete.

The final figure (figure 18) shows the osmotic compressibility as estimated from the
low-k behaviour of the structure factor:

ρlkBT χT = S(k = 0) (24)

It is not possible to measure directly thek = 0 value in a simulation, since the volume
is not fluctuating. We have therefore estimated thek = 0 value by extrapolating the data
obtained for the two smallestk-values that fit in the periodic box (L = 24.2σl). As can be
seen from the figure, the peak atk = 0 keeps on growing throughout the simulation, and
there is no evidence for its levelling off. This is one more piece of evidence suggesting
that a slow phase separation is taking place.
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Figure 16. The structure factor at state point ‘C’. This figure shows the structure factor at the
beginning of the simulation compared to its value averaged all over the two megacycles. For
the large-k regime shown here, the two curves are rather similar.

Figure 17. The structure factor at state point ‘C’. The structure factor at the end of the
simulation compared to the mean value. Some sharp, but fluctuating, peaks appear in the
structure, suggesting instantaneous crystalline order. However, no such order is apparent in the
averaged curve.
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Figure 18. The evolution of the compressibility at state point ‘C’. This figure shows the large-
scale density fluctuation enhancement during the simulation.

5. Conclusion

The MC data presented in this paper confirm the prediction of integral equations about the
spinodal instability of a mixture of large and small spheres. But, although the MC data
are, in this respect, in qualitative agreement with the integral equation predictions, there
are appreciable quantitative discrepancies. All integral equations tend to underestimate
the stickiness of large particles. A detailed study of the effective depletion force showed
that whereas the superposition approximation is not able to reproduce the variations of the
potential inside the depletion well, the perturbative expression obtained by Maoet al [2]
does so, even at high density. In contrast, the perturbation theory fails earlier at large
inter-particle separations.

The study of the three-particle contribution to the effective force suggests that the
model of an effective fluid interacting through a pairwise-additive depletion potential should
accurately describe a binary mixture of hard spheres, at least for a size ratio of 0.1 or less.
This model has been tested by comparing the pair structure obtained from MC simulations
of the full binary system, MC simulations of the effective system and predictions of integral
equations.

For one state point, we find that the mixture exhibits a clear tendency to phase separate.
This effect shows up in the behaviour of the structure factor at smallk-values. But the
phase separation is rather different from that found in simple liquids, since it results in
the growth of huge clusters involving a large fraction of all of the particles in the system.
Such behaviour is reminiscent of phase separation in the adhesive hard-sphere system. We
can observe two steps in the cluster growth: during the first step the particles rapidly
stick together, more or less at random. During the second step the structure of the cluster
relaxes. This is a slow process that has not yet been characterized very well, but both the
pair distribution function and the structure factor show indications of local ordering. As
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the cluster relaxation is very slow, we are probably only probing the early stages of this
process.

A comparison of our numerical results with experimental data is quite difficult, since
most experimental colloidal mixtures behave like slightly non-additive hard-sphere mixtures.
However, it is tempting to compare our results to the experiments performed by van
Duijneveldtet al [29], who observed a spinodal instability in a mixture of hard-sphere-like
colloidal particles, that present the same characteristics as those observed in MC simulations
(very slow dynamics and no clear long-range order on the time-scale of the experiment).

In any event, it would be very interesting to study the later stages of the cluster
relaxation, using techniques that are more sensitive to various forms of crystalline order.
An obvious probe to use in a simulation would be the study of the bond orientational order.
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Appendix A

The algorithm used to perform the MC simulations for the full binary system is the following.
The move of a small particle is performed according to the standard MC algorithm for

hard spheres. A trial move of a large particle consists in the following steps.

(1) A new positionrnew is chosen around the ‘old’ positionrold of the large particle.
This new position is chosen at random in a cubic box centred onrold . The size of the box
is a fraction of the diameter of the large particles. As a consequence, the large particle
placed at its new position overlaps many small particles, and possibly large ones.

(2) In the case of an overlap with another large particle, the move is automatically
rejected.

(3) Otherwise, small particles overlapping the large sphere placed at its new position
are identified. These particles have their centres in a sphere of radiusξ centred atrnew.

(4) The next step consists in the insertion of these small particles into the volume left
by the move of the large one: a sphere of radiusξ centred atrold . The algorithm used
to perform the insertion is derived from the procedure proposed by Siepmann and Frenkel
[15, 16] for polymer simulation. The only difference is the random choice of trial positions
in the insertion volume.
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